3.822 \(\int \frac{x^4}{\sqrt{a+b x^4}} \, dx\)

Optimal. Leaf size=108 \[ \frac{x \sqrt{a+b x^4}}{3 b}-\frac{a^{3/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{6 b^{5/4} \sqrt{a+b x^4}} \]

[Out]

(x*Sqrt[a + b*x^4])/(3*b) - (a^(3/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Ellip
ticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(6*b^(5/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0207992, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {321, 220} \[ \frac{x \sqrt{a+b x^4}}{3 b}-\frac{a^{3/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{6 b^{5/4} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/Sqrt[a + b*x^4],x]

[Out]

(x*Sqrt[a + b*x^4])/(3*b) - (a^(3/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Ellip
ticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(6*b^(5/4)*Sqrt[a + b*x^4])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{x^4}{\sqrt{a+b x^4}} \, dx &=\frac{x \sqrt{a+b x^4}}{3 b}-\frac{a \int \frac{1}{\sqrt{a+b x^4}} \, dx}{3 b}\\ &=\frac{x \sqrt{a+b x^4}}{3 b}-\frac{a^{3/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{6 b^{5/4} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0163677, size = 62, normalized size = 0.57 \[ \frac{x \left (-a \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^4}{a}\right )+a+b x^4\right )}{3 b \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/Sqrt[a + b*x^4],x]

[Out]

(x*(a + b*x^4 - a*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)]))/(3*b*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.008, size = 91, normalized size = 0.8 \begin{align*}{\frac{x}{3\,b}\sqrt{b{x}^{4}+a}}-{\frac{a}{3\,b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^4+a)^(1/2),x)

[Out]

1/3*x*(b*x^4+a)^(1/2)/b-1/3/b*a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)
*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{b x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/sqrt(b*x^4 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{4}}{\sqrt{b x^{4} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(x^4/sqrt(b*x^4 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 0.94817, size = 37, normalized size = 0.34 \begin{align*} \frac{x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**4+a)**(1/2),x)

[Out]

x**5*gamma(5/4)*hyper((1/2, 5/4), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{b x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/sqrt(b*x^4 + a), x)